SECONDARY MATH I // MODULE 3 MODELING DATA-9.2

9.2 Data Distribution

A Practice Understanding Task

A lot of information can be obtained from looking at data plots and their distributions. It is important when describing data that we use context to communicate the **shape**, **center**, and **spread**.

Shape and spread:

- **Modes:** uniform (evenly spread- no obvious mode), unimodal (one main peak), bimodal (two main peaks), or multimodal (multiple locations where the data is relatively higher than others).
- **Skewed distribution:** when most data is to one side leaving the other with a 'tail'. Data is skewed to side of tail. (if tail is on left side of data, then it is skewed left).
- **Normal distribution and standard deviation:** curve is unimodal and symmetric. Data that has a normal distribution can also describe the data by how far it is from the mean using standard deviation.
- **Outliers:** values that stand away from the body of the distribution. For a box-and-whisker outliers determined if they are more than 1.5 times the interquartile range (length of box) beyond quartiles 1 and 3. Also considered an outliner if data is more than two standard deviations from the center of a normal distribution.
- **Variability:** values that are close together have low variability; values that are spread apart have high variability.

Center:

• Analyze the data and see if one value can be used to describe the data set. Normal distributions make this easy. If not a normal distribution, determine if there is a 'center' value that best describes the data. Bimodal or multimodal data may not have a center that would provide useful data.

There are representations of test scores from six different classes found below, for each:

- 1. Describe the data distribution.
- 2. Compare data distributions between Anderson and Williams.
- 3. Compare data distributions between Williams and Lemon.
- 4. Compare data distributions between Croft and Hurlea.
- 5. Compare data distributions between Jones, Spencer, and Anderson.
- 6. Compare data distributions between Spencer and the other histograms.
- 7. Which distributions are most similar? Different? Explain your answer.

SECONDARY MATH I // MODULE 3 MODELING DATA-9.2

Data set I: Williams's class

Data set III: Croft's Class

Data set V: Hurlea's class

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

Data set II: Lemon's class

Data set IV: Anderson's Class

Data set VI: Jones' class

SECONDARY MATH I // MODULE 3 MODELING DATA-9.2

Data set VII: Spencer's class

Data set VIII: Overall Achievement Test Scores

